Eighth Semester B.E. Degree Examination, June/July 2017 Flight Vehicle Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Enlist the ten performance parameter considered for designing an aircraft. (10 Marks)
 - b. Consider a typical military Bomber of L/D = 16 warm up and take off fuel fraction is 0.97. Climb fuel fraction is 0.985, cruise R = 1500 n m = 2778 km, C = 0.5/hr, V = 0.6M (same for both the cruise condition 1st loiter E = 3 hrs, C = 0.4/hr 2nd loiter E = 1/3 hrs. Landing fuel fraction is 0.995. Estimate take off to landing fuel fraction W_f/W_0 . From W_f/W_0 . Calculate the value of W_0 . (10 Marks)

- 2 a. Define the term 'Wing Loading'. Briefly explain the consideration for selection of $\frac{W}{S}$ for an aircraft under design process. (10 Marks)
 - b. Derive and explain:
 - i) Wing loading effect on range
 - ii) Effect of aspect ratio on aircraft performance.

(10 Marks)

3 a. Explain swap single selection criteria.

(10 Marks)

b. Show that for a straight, tapered wing, mean aerodynamic chord(MAC) is $\overline{C} = \frac{2}{3} C_r \left(\frac{\lambda^2 + \lambda + 1}{\lambda + 1} \right), \text{ where } \lambda \text{ - taper ratio and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord } C_v \text{ is r$

 $\wedge_{\mathbb{C}^{/4}}$. (10 Marks)

- 4 a. Show in a graph the variation of drag due to lift, zero lift drag and total drag with velocity.

 Also show how power required and power available in a piston engine propeller aircraft varies with velocity.

 (10 Marks)
 - b. Explain engine installed thrust correction.

(10 Marks)

PART - B

- 5 a. Write the equation of motion of landing roll and obtain an expression for landing ground roll distance. (10 Marks)
 - b. Explain three common approaches used for active lift enhancement, with the help of neat sketches. (10 Marks)

10AE81

6	a. b.	Explain contribution of fuselage using vertical stabilizer towards lateral stability. What are neutral point, c.g. margin and static margin?	(10 Marks) (10 Marks)
7	a. b.	Sketch and explain three commonly used landing gear arrangements. Explain anti-icing and de-icing systems in an aircraft.	(10 Marks) (10 Marks)
8	a. b.	Explain a typical flight control system. Write short note on: i) Radio navigation systems	(10 Marks)
		ii) Aircraft weapon systems.	(10 Marks)

* * * * *